Consider

Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.

Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow   \sim  p )$  is a tautology.

  • [AIEEE 2009]
  • [JEE MAIN 2013]
  • A

    Statement $-1$ is false, Statement $-2$ is true

  • B

    Statement $-1$ is true, Statement $-2$ is false

  • C

    Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is a correct explanation for Statement $-1$

  • D

    Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is not a correct explanation for Statement $-1$

Similar Questions

Which of the following statements is a tautology?

  • [JEE MAIN 2022]

The negation of the Boolean expression $ \sim \,s\, \vee \,\left( { \sim \,r\, \wedge \,s} \right)$ is equivalent to

  • [JEE MAIN 2019]

Let $p , q , r$ be three statements such that the truth value of $( p \wedge q ) \rightarrow(\sim q \vee r )$ is $F$. Then the truth values of $p , q , r$ are respectively

  • [JEE MAIN 2020]

Given the following two statements :

$\left( S _{1}\right):( q \vee p ) \rightarrow( p \leftrightarrow \sim q )$ is a tautology.

$\left( S _{2}\right): \sim q \wedge(\sim p \leftrightarrow q )$ is a fallacy.

Then

  • [JEE MAIN 2020]

The statement $[(p \wedge  q) \rightarrow p] \rightarrow (q \wedge  \sim q)$ is