Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.
Statement $-1$ is false, Statement $-2$ is true
Statement $-1$ is true, Statement $-2$ is false
Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is a correct explanation for Statement $-1$
Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is not a correct explanation for Statement $-1$
Which of the following statements is a tautology?
The negation of the Boolean expression $ \sim \,s\, \vee \,\left( { \sim \,r\, \wedge \,s} \right)$ is equivalent to
Let $p , q , r$ be three statements such that the truth value of $( p \wedge q ) \rightarrow(\sim q \vee r )$ is $F$. Then the truth values of $p , q , r$ are respectively
Given the following two statements :
$\left( S _{1}\right):( q \vee p ) \rightarrow( p \leftrightarrow \sim q )$ is a tautology.
$\left( S _{2}\right): \sim q \wedge(\sim p \leftrightarrow q )$ is a fallacy.
Then
The statement $[(p \wedge q) \rightarrow p] \rightarrow (q \wedge \sim q)$ is